Efficient greedy learning of Gaussian mixture models
ثبت نشده
چکیده
منابع مشابه
Gossip-Based Greedy Gaussian Mixture Learning
It has been recently demonstrated that the classical EM algorithm for learning Gaussian mixture models can be successfully implemented in a decentralized manner by resorting to gossip-based randomized distributed protocols. In this paper we describe a gossip-based implementation of an alternative algorithm for learning Gaussian mixtures in which components are added to the mixture one after ano...
متن کاملEfficient Greedy Learning of Gaussian Mixture Models
This article concerns the greedy learning of gaussian mixtures. In the greedy approach, mixture components are inserted into the mixture one after the other. We propose a heuristic for searching for the optimal component to insert. In a randomized manner, a set of candidate new components is generated. For each of these candidates, we find the locally optimal new component and insert it into th...
متن کاملRecognizing the Emotional State Changes in Human Utterance by a Learning Statistical Method based on Gaussian Mixture Model
Speech is one of the most opulent and instant methods to express emotional characteristics of human beings, which conveys the cognitive and semantic concepts among humans. In this study, a statistical-based method for emotional recognition of speech signals is proposed, and a learning approach is introduced, which is based on the statistical model to classify internal feelings of the utterance....
متن کاملVariational Mixtures of Gaussian Processes for Classification
Gaussian Processes (GPs) are powerful tools for machine learning which have been applied to both classification and regression. The mixture models of GPs were later proposed to further improve GPs for data modeling. However, these models are formulated for regression problems. In this work, we propose a new Mixture of Gaussian Processes for Classification (MGPC). Instead of the Gaussian likelih...
متن کامل